Probleme der Behandlung quadratischer Funktionen
Beschreibung von Zusammenhängen durch quadratische Funktionen
Für quadratische Funktionen gibt es im Unterschied zu den linearen Funktionen viel weniger Zusammenhänge zwischen Größen, die in für Schüler verständlicher Weise beschrieben werden können. Das Hauptanwendungsfeld sind neben den Formeln zur Berechnung des Flächeninhalts von Quadraten und Kreisen die beschleunigten Bewegungen, die im Physikunterricht systematisch aber erst in der 10. Klasse behandelt werden.
Trotzdem sollten exemplarisch gegebene Daten (Messreihen) zu quadratischen Zusammenhängen bei Bewegungsvorgängen untersucht und durch quadratische Funktionen modelliert werden.
Zur Reihenfolge der Behandlung von quadratischen Gleichungen und quadratischen Funktionen
Die quadratischen Gleichungen sollten aus folgenden Gründen vor den quadratischen Funktionen behandelt.
- Auf diese Weise kann die Eigenständigkeit der Entwicklung des Könnens im Lösen von Gleichungen stärker hervorgehoben werden. Der mathematische Bezug zu den quadratischen Funktionen kann auch nach deren Behandlung erarbeitet werden.
- In der Kl. 8 wurden auch zuerst die linearen Gleichungen und dann die linearen Funktionen behandelt. Es sollte in Kl. 9 eine möglichst weitgehende Analogie zwischen der Behandlung der Gleichungen bzw. Funktionen angestrebt werden.
- Das Lösen quadratischer Gleichungen ist einfacher als die Bearbeitung der oft komplexen Probleme im Zusammenhang mit quadratischen Funktionen.
- Durch die Behandlung quadratischer Gleichungen können einige Elemente bei der Behandlung quadratischer Funktionen vorbereitet werden (Diskriminante, quadratische Ergänzung, Nullstellenberechnung). Die Zusammenhänge zwischen quadratischen Gleichungen und quadratischen Funktionen können dann im Zusammenhang mit der Berechnung von Nullstellen der quadratischen Funktionen erarbeitet und auch in den gemischten Übungen gefestigt.
Zur Bestimmung der Koordinaten des Scheitelpunktes quadratischer Funktionen aus der Normalform
Zur Bestimmung der Scheitelpunktskoordinaten aus der Normalform gibt es drei Möglichkeiten:
- Überführung in die Scheitelpunktsform mithilfe der quadratischen Ergänzung
- Verwenden der allgemeinen Formeln zur Berechnung der Koordinaten
- Berechnen der x-Koordinate mit dem Term – p/2 und der y-Koordinate als Funktionswert f(– p/2).
Die erste Möglichkeit sollte nicht verwendet werden, da bei der Behandlung quadratischer Gleichungen keine Fertigkeiten im Bestimmen der quadratischen Ergänzung ausgebildet wurden und die Rechnungen zudem sehr fehleranfällig sind.
Wenn ein Tafelwerk zur Verfügung steht, können die allgemeinen Formeln verwendet werden, was in Vorbereitung der Abschlussprüfungen sinnvoll ist.
Am einfachsten ist die Verwendung der dritten Möglichkeit. Die Berechnung des Term – p/2 ist bei der Lösungsformel für quadratische Gleichungen geübt worden. Der Zusammenhang mit der Lösungsformel ist grafisch leicht einsichtig, wenn die Nullstellen existieren und die Berechnung von Funktionswerten ist ohnehin eine notwendige Grundhandlung.
Die dritte Möglichkeit lässt sich auch auf den Fall der allgemeinen Form einer quadratischen Funktion übertragen. Die x-Koordinate des Scheitelpunktes ist in diesem Fall - b/(2a) . Bei Anwendung dieser Vorgehensweise sollte zuerst die Nullstellenberechnung vorgenommen werden. Die dabei zu berechnenden Terme – p/2 bzw. - b/(2a) können dann als x-Koordinate des Scheitelpunktes verwendet werden.
Beziehungen von linearen und quadratischen Funktionen
Bei der Behandlung der quadratischen Funktionen können folgende Gemeinsamkeiten und Unterschiede zu linearen Funktionen betrachtet werden. Damit können die Kenntnisse der Schüler zu Eigenschaften von Funktionen wie z.B. der Einfluss von Parametern auf den Graphen systematisch entwickelt werden.
- Die Graphen beider Funktionen sind besondere geometrische Linien (Kurven), die einen eigenen Namen haben (Gerade bzw. Parabel). Mit den Funktionsgleichungen können deshalb auch diese Kurven beschrieben werden.
- In den Funktionsgleichungen treten neben den Variablen x und y weitere Variable auf, die Parameter heißen. Bei linearen Funktionen sind dies m und n und bei quadratischen a, b, c, d, e, p und q. Von ihnen hängt der Verlauf der Graphen ab.
- Es gibt eine Normalparabel, aber keine „Normalgerade“, da alle Graphen linearer Funktionen die gleiche geometrische Form haben. Bezüglich der Lage im Koordinatensystem spielt aber der Graph von y = x die Rolle einer „Normalgerade“, da sich alle anderen Graphen der linearen Funktionen durch Verschieben oder Strecken/Stauchen aus dieser Geraden ergeben.
- Der Parameter m bewirkt wie der Parameter a eine Streckung bzw. Stauchung des Graphen bezüglich der x-Achse.
- Unterscheiden sich die Anstiege m und die Parameter a je zweier linearer bzw. quadratischer Funktionen y = mx und y = ax² nur um das Vorzeichen, gehen die Graphen der Funktionen durch Spiegelung an der x-Achse auseinander hervor.
- Die Parameter n und e (in y = x² +e) haben die gleiche Bedeutung. Sie geben die Richtung und Weite der Verschiebung bezüglich der y-Achse an.
- Im 1. Quadranten gilt für beide Funktionen bei positivem m und positivem a: Wenn x wächst, wächst auch y. Allerdings ist bei konstantem Zuwachs von x der Zuwachs von y bei einer linearen Funktion auch immer konstant, während er bei einer quadratischen Funktion umso größer ist, je größer der Ausgangswert von x ist.